Wednesday, June 3, 2009

AGXT gene

The official name of AGXT gene is alanine-glyoxylate aminotransferase.The AGXT gene provides instructions for making a liver enzyme called alanine-glyoxylate aminotransferase gene is expressed only in the liver and the encoded protein is localized mostly in the peroxisomes.This protein is important for several cellular activities such as ridding the cell of toxic substances and helping to break down certain fats. Peroxisomes contain several enzymes that are imported from the internal fluid of the cell (cytosol). Enzymes that are transferred into peroxisomes have a special arrangement of building blocks (amino acids) at one end of the enzyme that serves as a shipping address. In the peroxisome, alanine-glyoxylate aminotransferase converts a compound called glyoxylate to the amino acid glycine, which is later used for making enzymes and other proteins.





Location:

AGXT gene is present in human chromosome 2 and ts coded from region241456835 to 241467210 with 11 exons, the cytogenetic location 2q36-q37.

Disease

Mutation in the AGXT Gene causes type 1 primary hyperoxaluria. In some type 1 primary hyperoxaluria cases, alanine-glyoxylate aminotransferase enzyme activity is partially or entirely absent because of a mutation. As a result of this enzyme shortage, glyoxylate accumulates and is converted to a compound called oxalate instead of glycine. Oxalate, in turn, combines with calcium to form calcium oxalate, which the body cannot readily eliminate. Deposits of calcium oxalate can lead to kidney stones, kidney damage or failure, and injury to other organs, which are characteristic features of primary hyperoxaluria.

In other people with type 1 primary hyperoxaluria, the alanine-glyoxylate aminotransferase enzyme is misplaced within the cell. Misplacement occurs when certain mutations combine with a natural variation (polymorphism) in the gene. In most cases, a mutation replaces the amino acid glycine with the amino acid arginine at position 170 in the enzyme (written as Gly170Arg or G170R). This mutation occurs with a polymorphism that replaces the amino acid proline with the amino acid leucine at position 11 (written as Pro11Leu or P11L). The combined effect of the mutation and the polymorphism alters the structure of alanine-glyoxylate aminotransferase and changes the cellular shipping address of the enzyme. Instead of locating in peroxisomes, the enzyme is misdelivered to mitochondria, the energy-producing centers of cells. Even though the enzyme retains some of its activity, it cannot make contact with glyoxylate, which is located in peroxisomes. As a result, glyoxylate accumulates, leading to the signs and symptoms of primary hyperoxaluria.




Hope You Like This Post, Let me know what you feel about this blog.
Email me : help.me.ishan@gmail.com

2 comments:

Rosenwald Lindsay said...

Very Nice Blogging by you:-
Lindsay Rosenwald http://www.lindsay-rosenwald.net/ Lindsay Rosenwald life facts and Rosenwald biography.

Rosenwald Lindsay said...

Very Nice Blogging by you:-
Lindsay Rosenwald http://www.lindsay-rosenwald.net/ Lindsay Rosenwald life facts and Rosenwald biography.