Eukaryotic translation is the process by which messenger RNA is translated into proteins in eukaryotes.
Initiation
The cap-dependent initiation
Initiation of translation involves the interaction of certain key proteins with a special tag bound to 5'-end of an mRNA molecule. The protein factors bind the small ribosomal subunit (also referred to as the 40S subunit), and these initiation factors hold the mRNA in place. The eukaryotic Initiation Factor 3 (eIF3) is associated with the small ribosomal subunit, and plays a role in keeping the large ribosomal subunit from prematurely binding. eIF3 also interacts with the eIF4F complex which consists of three other initiation factors: eIF4A, eIF4E and eIF4G. eIF4G is a scaffolding protein which directly associates with both eIF3 and the other two components. eIF4E is the cap-binding protein. It is the rate-limiting step of cap-dependent initiation, and is often cleaved from the complex by some viral proteases to limit the cell's ability to translate its own transcripts. This is a method of hijacking the host machinery in favor of the viral (cap-independent) messages. eIF4A is an ATP-dependent RNA helicase, which aids the ribosome in resolving certain secondary structures formed by the mRNA transcript. There is another protein associated with the eIF4F complex called the Poly-A Binding Protein (PABP), which binds the poly-A tail of most eukaryotic mRNA molecules. This protein has been implicated in playing a role in circularization of the mRNA during translation.
This pre-initiation complex (43S subunit, or the 40S and mRNA) accompanied by the protein factors move along the mRNA chain towards its 3'-end, scanning for the 'start' codon (typically AUG) on the mRNA, which indicates where the mRNA will begin coding for the protein. In eukaryotes and archaea, the amino acid encoded by the start codon is methionine. The initiator tRNA charged with Met forms part of the ribosomal complex and thus all proteins start with this amino acid (unless it is cleaved away by a protease in subsequent modifications). The Met-charged initiator tRNA is brought to the P-site of the small ribosomal subunit by eukaryotic Initiation Factor 2 (eIF2). It hydrolyzes GTP, and signals for the dissociation of several factors from the small ribosomal subunit which results in the association of the large subunit (or the 60S subunit). The complete ribosome (80S) then commences translation elongation, during which the sequence between the 'start' and 'stop' codons is translated from mRNA into an amino acid sequence -- thus a protein is synthesized.
The cap-independent initiation
The best studied example of the cap-independent mode of translation initiation in eukaryotes is the Internal Ribosome Entry Site IRES approach. What differentiates cap-independent translation from cap-dependent translation is that cap-independent translation does not require the ribosome to start scanning from the 5' end of the mRNA cap until the start codon. The ribosome can be trafficked to the start site by ITAFs (IRES trans-acting factors) bypassing the need to scan from the 5' end of the untranslated region of the mRNA. This method of translation has been recently discovered, and has found to be important in conditions that require the translation of specific mRNAs, despite cellular stress or the inability to translate most mRNAs. Examples include factors responding to apoptosis, stress-induced responses.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment