Sunday, December 14, 2008

Ribosome

Ribosomes (from ribonucleic acid and "greek: soma (meaning body)") are complexes of RNA and protein that are found in all cells. Prokaryotic ribosomes from archaea and bacteria are smaller than most of the ribosomes from eukaryotes such as plants and animals. However, the ribosomes in the mitochondrion of eukaryotic cells resemble those in bacteria, reflecting the evolutionary origin of this organelle.











Blog contains more than 450 videos covering all the aspects of Biological Sciences
Ribosome

Ribosomes (from ribonucleic acid and "greek: soma (meaning body)") are complexes of RNA and protein that are found in all cells. Prokaryotic ribosomes from archaea and bacteria are smaller than most of the ribosomes from eukaryotes such as plants and animals. However, the ribosomes in the mitochondrion of eukaryotic cells resemble those in bacteria, reflecting the evolutionary origin of this organelle.








The function of ribosomes is the assembly of proteins, in a process called translation. Ribosomes do this by catalysing the assembly of individual amino acids into polypeptide chains; this involves binding a messenger RNA and then using this as a template to join together the correct sequence of amino acids. This reaction uses adapters called transfer RNA molecules, which read the sequence of the messenger RNA and are attached to the amino acids.


Ribosomes are the workhorses of protein biosynthesis, the process of translating RNA into protein. The mRNA comprises a series of codons that dictate to the ribosome the sequence of the amino acids needed to make the protein. Using the mRNA as a template, the ribosome traverses each codon of the mRNA, pairing it with the appropriate amino acid. This is done using molecules of transfer RNA (tRNA) containing a complementary anticodon on one end and the appropriate amino acid on the other.

Protein synthesis begins at a start codon near the 5' end of the mRNA. The small ribosomal subunit, typically bound to a tRNA containing the amino acid methionine, binds to an AUG codon on the mRNA and recruits the large ribosomal subunit. The large ribosomal subunit contains three tRNA binding sites, designated A, P, and E. The A site binds an aminoacyl-tRNA (a tRNA bound to an amino acid); the P site binds a peptidyl-tRNA (a tRNA bound to the peptide being synthesized); and the E site binds a free tRNA before it exits the ribosome.


In Figure 3, both ribosomal subunits (small and large) assemble at the start codon (towards the 5' end of the mRNA). The ribosome uses tRNA which matches the current codon (triplet) on the mRNA to append an amino acid to the polypeptide chain. This is done for each triplet on the mRNA, while the ribosome moves towards the 3' end of the mRNA. Usually in bacterial cells, several ribosomes are working parallel on a single mRNA, forming what we call a polyribosome or polysome.

No comments: