Monday, December 15, 2008

T helper cell lymphocyte

T helper cells (also known as effector T cells or Th cells) are a sub-group of lymphocytes (a type of white blood cell or leukocyte) that plays an important role in establishing and maximizing the capabilities of the immune system. These cells are unusual in that they have no cytotoxic or phagocytic activity; they cannot kill infected host (also known as somatic) cells or pathogens, and without other immune cells they would usually be considered useless against an infection. Th cells are involved in activating and directing other immune cells, and are particularly important in the immune system. They are essential in determining B cell antibody class switching, in the activation and growth of cytotoxic T cells, and in maximizing bactericidal activity of phagocytes such as macrophages. It is this diversity in function and their role in influencing other cells that gives T helper cells their name.



Mature Th cells are believed to always express the surface protein CD4. T cells expressing CD4 are also known as CD4+ T cells. CD4+ T cells are generally treated as having a pre-defined role as helper T cells within the immune system, although there are known rare exceptions. For example, there are sub-groups of suppressor T cells, natural killer T cells, and cytotoxic T cells that are known to express CD4 (although cytotoxic examples have been observed in extremely low numbers in specific disease states, they are usually considered non-existent). All of the latter CD4+ T cell groups are not considered T helper cells, and are beyond the scope of this article.


The importance of helper T cells can be seen from HIV, a virus that infects cells that are CD4+ (including helper T cells). Towards the end of an HIV infection the number of functional CD4+ T cells falls, which leads to the symptomatic stage of infection known as the acquired immune deficiency syndrome (AIDS). There are also rare disorders, probably genetic in etiology, that result in the absence or dysfunction of CD4+ T cells. These disorders produce similar symptoms, and many of these are fatal (see T-Lymphocytopenia).



Activation of naïve helper T cells


Following T cell development, matured, naïve (meaning they have never been exposed to the antigen to which they can respond) T cells leave the thymus and begin to spread throughout the body, including the lymph nodes. Like all T cells, they express the T cell receptor/CD3 complex. The T cell receptor (TcR) consists of both constant and variable regions, the latter of which determines what antigen the T cell can respond to. CD4+ T cells have TcRs with an affinity for Class II MHC, and it is believed that CD4 is involved in determining MHC affinity during maturation in the thymus. Class II MHC proteins are generally only found on the surface of professional antigen-presenting cells (APCs). Professional antigen presenting cells are primarily dendritic cells, macrophages and B cells, although dendritic cells are the only cell group that expresses MHC Class II constitutively (at all times). Some APCs also bind native (or unprocessed) antigens to their surface, such as follicular dendritic cells, but unprocessed antigens do not interact with T cells and are not involved in their activation. The antigens that bind to MHC proteins are always short peptides, 8-10 amino acids long for MHC Class I, and up to 25 or so for MHC Class II.


Recognition (Signal 1)


During an immune response, professional antigen-presenting cells (APCs) endocytose (absorb) foreign material (typically bacteria or viruses), which undergoes processing, then travel from the infection site to the lymph nodes. Once at the lymph nodes, the APC begins to present antigen peptides that are bound to Class II MHC, allowing CD4+ T cells that express specific TcR's against the peptide/MHC complex to activate.

When a Th cell encounters and recognises the antigen on an APC, the TcR-CD3 complex binds strongly to the peptide-MHC complex present on the surface of professional APC's. CD4, a co-receptor of the TCR complex, also binds to a different section of the MHC molecule. These interactions bring these proteins closer together, allowing the intracellular kinases present on the TcR, CD3 and CD4 proteins to activate each other via phosphorylation. With the assistance of a phosphatase present on the intracellular section of CD45 (common leukocyte antigen), these molecules activate the major biochemical pathways in the cytosol of the Th cell. These active pathways are known as Signal 1 of T cell activation, as it is the first and primary pro-activation signal in a Th cell. Upon subsequent encounters with a given antigen, memory T cells are re-activated using the same TCR pathways.

The binding of the antigen-MHC to the TCR complex and CD4 may also help the APC and the Th cell adhere during Th cell activation, but the integrin protein LFA-1 on the T cell and ICAM on the APC are the primary molecules of adhesion in this cell interaction.

It is unknown what role the relatively bulky extracellular region of CD45 plays during cell interactions, but CD45 has various isoforms that change in size depending on the Th cell's activation and maturation status. For example, CD45 shortens in length following Th activation (CD45RA+ to CD45RO+), but whether this change in length influences activation is unknown. It has been proposed that the larger CD45RA+ may decrease the accessibility of the T cell receptor for the antigen-MHC molecule, thereby necessitating an increase in the affinity (and specificity) of the T cell for activation. Once the activation has occurred however, CD45 shortens, allowing easier interactions and activation as an effector T helper cell.


Verification (Signal 2)



Having received the first TcR/CD3 signal, the naïve T cell must activate a second independent biochemical pathway, known as Signal 2. This verification step is a protective measure to ensure that a T cell is responding to a foreign antigen. If this second signal is not present during initial antigen exposure, the T cell presumes that it is auto-reactive. This results in the cell becoming anergic (anergy is generated from the unprotected biochemical changes of Signal 1). Anergic cells will not respond to any antigen in the future, even if both signals are present later on. These cells are generally believed to circulate throughout the body with no value until they apoptose at the end of their lifespan.


The second signal involves an interaction between CD28 on the CD4+ T cell and the proteins CD80 (B7.1) or CD86 (B7.2) on the professional APCs. Both CD80 and CD86 activate the CD28 receptor. These proteins are also known as co-stimulatory molecules.

Although the verification stage is necessary for the activation of naïve helper T cells, the importance of this stage is best demonstrated during the similar activation mechanism of CD8+ cytotoxic T cells. As naïve CD8+ T cells have no true bias towards foreign sources, these T cells must rely on the activation of CD28 for confirmation that they recognise a foreign antigen (as CD80/CD86 is only expressed by active APC's). CD28 plays an important role in decreasing the risk of T cell auto-immunity against host antigens.

Once the naïve T cell has both pathways activated, the biochemical changes induced by Signal 1 are altered, allowing the cell to activate instead of anergise. The second signal is then obsolete; only the first signal is necessary for future activation. This is also true for memory T cells, which is one example of learned immunity. Faster responses occur upon reinfection because memory T cells have already undergone confirmation and can produce effector cells much sooner.


Proliferation


Once both stimulatory signals are active within the helper T cell, the cell then allows itself to proliferate. It achieves this by releasing a potent T cell growth factor called interleukin-2 (IL-2). Activated T cells also produce the alpha sub-unit of the IL-2 receptor (CD25 or IL-2R), enabling a fully functional receptor that can bind with IL-2, which in turn activates the T cell's proliferation pathways.

In this case, the released IL-2 binds to same T cell's IL-2 receptors to allow itself to proliferate. The phenomenon of cells releasing cytokines to alter their own behaviour is known as auto-regulation (or autocrine stimulation). It should be noted that this is not the only function of IL-2 release (e.g. NK-cells also begin to proliferate when getting in contact with IL-2), and that IL-2 can also bind to other T cells in the area (paracrine stimulation).





Maturation


After many cell generations, the Th cell's progenitors differentiate into effector Th cells, memory Th cells, and suppressor Th cells.

* Effector Th cells secrete cytokines, proteins or peptides that stimulate or interact with other leukocytes, including Th cells.
* Memory Th cells retain the antigen affinity of the originally activated T cell, and are used to act as later effector cells during a second immune response (e.g. if there is re-infection of the host at a later stage).
* Suppressor T cells do not promote immune function, but act to decrease it instead. Despite their low numbers during an infection, these cells are believed to play an important role in the self-limitation of the immune system; they have been shown to prevent the development of various auto-immune diseases.
*

The production of IL-2 by helper T cells is also necessary for the proliferation of activated CD8+ T cells. Without helper T cell interactions, CD8+ T cells do not proliferate and eventually become anergic. This cross-reliance on helper T cells is another way the immune system tries to prevent T cell-mediated auto-immune disease.

1 comment:

Drug Discovery said...

Hello,

You have provided a very good site to knowing about T helper cell lymphocyte. These are essential for controlling such intracellular pathogens as viruses and certain bacteria...

Contract Research